Proteolysis in mixed organic-aqueous solvent systems: applications for peptide mass mapping using mass spectrometry.
نویسندگان
چکیده
The rate of protein digestion imposes significant limitations on high-throughput protein identification using mass spectrometry. In this report, we demonstrate that proteins are readily digested by trypsin in the presence of organic solvents such as methanol, acetone, 2-propanol, and acetonitrile. The rates of protein digestion in organic solvents, as indicated by the abundances of digest fragment ions in the mass spectrum, are increased relative to aqueous solution. In addition, amino acid coverage for the analyzed proteins increases in the presence of the organic solvents, and proteins that are resistant to proteolysis are readily digested. For example, a 68% amino acid sequence coverage was attained from a tryptic digest of myoglobin in < 5 min from an 80% acetonitrile solution, whereas no digest fragments were detected from a 5 min digestion in an aqueous solution. Moreover, the tryptic digestion of a complex protein mixture in an organic-aqueous solvent system showed significantly enhanced digestion for nearly all of the protein components. Enzymatic digestion in an organic-aqueous solvent system is a rapid, simple, and effective peptide mass-mapping technique.
منابع مشابه
Optimization of mass spectrometry-compatible surfactants for shotgun proteomics.
An optimization and comparison of trypsin digestion strategies for peptide/protein identifications by microLC-MS/MS with or without MS compatible detergents in mixed organic-aqueous and aqueous systems was carried out in this study. We determine that adding MS-compatible detergents to proteolytic digestion protocols dramatically increases peptide and protein identifications in complex protein m...
متن کاملHighly Efficient Proteolysis Accelerated by Electromagnetic Waves for Peptide Mapping
Proteomics will contribute greatly to the understanding of gene functions in the post-genomic era. In proteome research, protein digestion is a key procedure prior to mass spectrometry identification. During the past decade, a variety of electromagnetic waves have been employed to accelerate proteolysis. This review focuses on the recent advances and the key strategies of these novel proteolysi...
متن کاملDetermination of Organic Sulfur Contaminants Using Hollow Fibre-protected Liquid-phase Micro-extraction Coupled with Gas Chromatography
A simple and solvent-minimized sample preparation technique based on hollow fibre-protected liquid-phase micro-extraction has been developed for extraction of fifteen organic sulphur compounds from aqueous samples. The analysis of the extracted them was performed by gas chromatography equipped with mass spectrometry and/or flame photometric detectors. 3.3 µL of organic solvent located in the lu...
متن کاملDerivatization of phosphorylated peptides with S- and N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ionization mass spectrometry.
The identification of phosphorylation sites is essential for a full understanding of the cellular functions of proteins. However, mass spectrometric analysis is often hampered by the low abundance of phosphoproteins, the difficulty of obtaining full sequence coverage by specific proteolysis reactions, and the low ionization efficiency of phosphopeptides compared with their non-phosphorylated an...
متن کاملPhotocleavable peptide hydrogel arrays for MALDI-TOF analysis of kinase activity.
We have developed an acrylamide copolymerization strategy to immobilize acrylamide labeled peptides and proteins into a hydrogel surface and detect their modifications using MALDI-TOF mass spectrometry. Copolymerization into hydrogels is robust, compatible with "off-the-shelf" chemistry, and yields materials and surfaces that are stable to aqueous or organic solvents, drying, high or low temper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 73 11 شماره
صفحات -
تاریخ انتشار 2001